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ABSTRACT 

We investigate the magnetohydrodynamic properties 

of random, stationary turbulence. 

conducting and the magnetic field weak, the logarithm of 

the field strength B is shown to be a random-walk variable 

to which the central limit theorem applies. 

tion value of B is then shown to increase exponentially 

with time. The behavior of infinitesimal material dis- 

placements which move frozen in the fluid, and which are, 

on the average, stretched by'the turbulence is investi- 

If the fluid is highly 

The expecta- 

. gated. It is well-known that for high conductivity the 

quantityz/density in a given fluid element remains pro- 

portional to the length of such a displacement chosen 

initially parallel to E3-. 

of a special gauge condition, that the magnitude of the 

Further, we show, with the use 

vector potential A/density remains proportional to the 

area of an infinitesimal material parallelogram chosen 

perpendicular to A .  The central limit theorem for two 

random variables then gives the joint probability density 
mm 

for A and B. 

(imposed by boundary conditions), the scale of the field 

is X A / B .  

If %has no large-scale Fourier component 

The resulting ohmic dissipation grows much 

faster than the random-walk energy input from the fluid. 

Plausible extension to high ohmic dissipation i s  made, and 

we conclude that in the absence of a large-scale Fourier 

component, the ohmic loss destroys the field. An experi- 

ment is proposed to test these conclusions. 



I. INTRODUCTION I 

The problem of the amplification and maintenance of 

magnetic fields in turbulent conducting fluids has long 

interested hydrodynamicists and astrophysicists. One 

opinion about the behavior of such systems that is gen- 

erally agreed upon is that under suitable conditions an 

initial magnetic "seed" field will, on the average, be 
amplified by the turbulent motion (Biermann and Schluter 1 
Batchc-lor2 Syrovatski 4 , Saffman" Kraichnan and 

7 8 
Nagarajan , and Pao ) .  

is also accompanied by a steady decrease in the scale of 

the field, so that the ohmic losses may in the long run 

overtake the amplification and wash the magnetic field out 

of existence. 

However, the amplification process 

Many authors have conjectured that turbulence will 

indeed finally destroy a magnetic field (Zeldovichg, 

SaffmanS, and Parker'O), but no convincing proof of this 

conjecture has appeared. Zeldovitch proved that two- 

dimensional turbulence w i l l ,  under certain rather restric- 

9 

tive boundary conditions, destroy a magnetic field, but it 

seems impossible to generalize his method to three dimen- 

sions. 

The present paper is concerned with setting up a 

statistical formalism for stationary random turbulence which 

is exact in the case of high conductivity and weak magnetic 

fields. 
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I .  

By ''weakll we mean that the Lorentz forces may be 

neglected in the fluid equations of motion. 

central limit theorem to derive an exponentiaL law of 

magnetic field increase with time by showing that t h e  ' 

We use the 

logarithm of the field strength in a given fluid element 

is a good random-walk variable. Biermann and Schluter 

were the first to surmise the exponential increase of the 

field strength. 

that of Parker , who also derived an exponential increase, 
and we are able to provide a more nearly rigorous basis for 

some of his results, with which we are in substantial agree- 

1 

Our analysis is related in some ways to 
1 0  

- . ment. 

We derive a similar exponential law f o r  the magnitude 

of the vector potential and are then able to show that the 

ohmic dissipation increases at a much faster rate than the 

magnetic field energy. Whether or not a final steady state 

can be maintained is shown to depend in an important way on 

boundary conditions, and we argue plausibly, although not 

rigorously, that if the magnetic field is not imposed from 

the outside by boundary conditions, the turbulence must 

eventually destroy the field, no matter how large the con- 

ductivity. 

If the field is initially strong enough to suppress 

the turbulence to some extent, this conclus'ion may not 

necessarily be valid. 
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A feasible laboratory experiment using liquid sodium 

is proposed which might show whether or not the general 

conclusions of this paper are valid. It would also pro- 
vide a test of Batchelor's criterion 2 for the maintenance 

of turbulent fields, with which the present paper disagrees. 

2 .  LOGARITHMIC FIELD STRENGTH AND VECTOR POTENTIAL 

AS RANDOM WALK VARIABLES 

The equations of motion of the magnetic field Ei-are, 

in Gaussian electromagnetic units, 

where u is the fluid velocity field and X = (4~0)-' is 

the magnetic diffusivity, CT being the conductivity in 
Acr 

sec/cm 2 . If we assume that the conductivity is infinite, 

then the equations become, in three-dimensional Cartesian 

tensor form, with a comma indicating partial differentiation, 

= T  B dBa 
dt= BnUa, n - Ba'n,n an n' 

- 6  u ab n,n '  where Tab u arb . 
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The material derivative d/dt follows the motion of a 

given fluid element as It experiences the various velocity 

shears and compressions, In what follows we investigate 

the behavior of the field and vector potential in the 

given fluid element as it moves about in the turbulent 

medium. 

dependent variables and consider explicitly only their 

time dependence. 

Thus we suppress the spatial dependence of the 

2.1 The Field Strength 

We consider the fluid motions to be turbulent and 

random, and thus we assume that the tensor Tab(t) is a 

random function and that it is, for weak fields, inde- 

pendent of the field strength B(t) in the fluid element, 

Let us substitute Ba = Bna in Eqn. ( 2 1 ,  where n (t) is a 

unit vector, and then form the scalar product with na, 

using the fact that nadna/dt = 0, to obtain 

a 

It is thus apparent that lnB(t) can be used as a 

random-walk variable, since the right-hand side of this 

equation depends only on Tab(t) and on the direction of 

the field. We now break up the time axis into steps of 

constant length 6t, such that the change in 1nB over 6t 

is essentially uncorrelated with the changes over the 

-5- 



previous steps. 

ponents of the turbylence, we might take 6t a 2 ~ .  

clear that since Tab(t) should be continuous in t, we can 

never completely lose the correlation with previous values 

of Tab. 

become very small . 

I f  'I i s  the time scale of  the larger com- 

X t  is 

However, for 6t2 2-r, these correlations should 
1 1  

We can now use the central limit theorem to obtain 

the probability density for 1nB 

N of time steps. 

over the j t h  time interval. 

the probability density function for 6,b will not depend 

b after a large number 

Let 6.b 5 6.lnB be the change in 1nB 
3 3 

For stationary turbulence, 

3 
. on j ,  and we thus write li (6.b)and e z ( ( 6 j b ) 2 > -  )I 2 70, 3 1 

where IJ and e l  do not depend on j. 
the central limit theorem 

density for the sum Ab : 1' j=1 3 
converges to the normal density 

Under these circumstances, 
1 2  

states that the probability 

6.b = b(N) - b(0) for large N 

f (Ab;N) = ( 2 ~ e , ~ N ) - ~  exp [- (A~-NP)~/~O,~N 1. 

We now wish to argue that 9 = 0. Since the turbulence 

is random, the components of the tensor Tab should have zero 

expectation value, and since in any case all "memory" of the 

initial field direction na is very quickly lost, it seems 

impossible even in the case of anisotropic turbulence that 

the right-hand side of Eqn. ( 3 )  should show any statistical 

tendency to be either positive or negative. Thus we 

se2; IJ = 0, and the normal density for Ab simplifies to 

0 



f ( A b i N )  = ,(2ne12N)-' exp 1 c (Ab)2/2e12N 1. ( 4 )  

3 This is at variance with the assumptron of Batchelor. 

that p > 0. 

We may now derive the exponential law of increase 

for the expectation value of the f i e l d  strength. I f  Bo 

is the initial field strength in a given fluid element, 

then after N time steps, the expectation value of B in 

the same fluid element i s ( B ) =  B (eAb>, and we easily 

obtain 
0 

Since N = t/6t, we see that (B) increases exponen- 

rially with the time. 

What is the order of magnitude of e l ?  If we take 

6 t  = 2.r,  then probably 1, the exact value depending 

on the type of turbulence. 

It is easy to find the law of increase for the 

magnetic energy density. We write 

( E > =  &(B2)= E (e 2Ab )- - E,exp(2e12N). 
0 

Thus (B2)7 ((B)l2. 
Note, by contrast, that the conclusion p = 0 

implies t h a t  t h e  expectation value of the change of 

. I  
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I .  

1nB vanishes: (AlnB) = (Ab) = 0. 

element, the field strength i s  just as apt to decrease as 

to increase. 

the expected change in ] B ]  is much larger than when a 

decrease occurs. 

Thus, in a given fluid 

However, given that an increase in B occurs, 

2.2 The Vector  Potential 

Having found the normal distribution for InB, we now 

do the same for the logarithin of the vector potential mag- 

nitude A ,  again under the assumption of infinite conductiv- 

ity. We first show that with the choice of a special gauge 

condition the vector potential A in a given fluid element 

renains perpendicular to an infinitesimal parallelogram 

formed by two material line elements which move frozen in 

t n e  fluid element. I.e., if we define the parallelogram 

by two infinitesimal material displacements 6y and 6 2  such 

that initially A &  6y 62, then this proportionality holds 

for all time. Furthermore, the quantity A/P remains pro- 

portional to the area of the parallelogram. 

w 

w L5n 

m w w 

The special gauge condition chosen is written u . A  = c+, r r r r H c  

where c is the velocity of light and + is the scalar poten- 
tial. 

0 -+ 0 0 ,  and using E = - aA/act - 11) and the above gauge 
condition, one finds 

Writing Ohm’s law as o-’J = E + c’lu X B, taking * -  m u  

u CI 
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1 3  
However it is easily shown that the equation of 

motion of the quantity p d z  = pdy,f6z- is identical to the 

above equation for A .  

to the infinitesimal surface eleme,nt 6S, provided that the ' ' 

above gauge condition is employed. 

- 
Therefore A/p remains proportional 

uh UI 

w 

We may immediately recover the conclusion of 
9 

Zeldovitch 

A is not changed by the motion itself, but only by the 

ohrnic dissipation. In his analysis the only important 

component of Lis the one perpendicular to the plane of 

that for two-dimensional incompressible motion, 

.u 

the motion, and since the motion is supposed incompressible, 

the areas of the parallelograms remain constant, and by our 

analysis A then remains constant. 

We now derive the probability density for the area of 

the parallelogram in the three-dimensional case. Since the 

parallelogram is infinitesimal, the shears and strains become, 

in the limit bS+O,spatially uniform over its surface, so that 

it remains a parallelogram. In Figure 1 we have indicated how 

the parallelogram may change over the time interval 6t, and we 

define three parameters which specify this change: (1) A homo- 

geneous horizontal scale change, which transforms E - t A ' B ' ;  (2) 

a homogeneous vertical scale change, which transforms C E - t C ' E ' ;  

and ( 3 )  a pure transverse shear which changes m + m ,  but 
does not change AB or m. Of course, the orientation of the 
parallelogram changes as well, but this is of no interest here. 

*m 
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The area of the parallelogram is S = AB.=, 

S 1  = I and thus the transverse shear does not 

change the area, and we may ignore it. 

the two perpendicular scale changes 6a and 6@, which 

change 1nS additively over the time interval 

a given scale change (6a,6B) always induces the same 

61nS, independently of the initial value of S .  Then de- 

We are left with 

6t; i.e., 

fining 6a and 6 B  such that each represents the change of 

the In of a unit length, we set 61nS = 6a + 66, and there- 

fore 61x1 (A/p)  = 6 a  + 6 B .  NOW, for stationary turbulence, 

the density may fluctuate, but in the long run we expect 

p % constant, since 61np is negatively correlated with 

previous 61np. Thus we ignore the density fluctuations 

and treat the fluid as incompressible. Therefore, we con- 

clude finally, for our purposes, 

6 1 n A , N  6a + 66. 

1 4  
However, it is well-known that the quantity B/p 

is proportional to the length of an infinitesimal 

displacement parallel to %which moves frozen in the 

fluid. Therefore, since we have set pxconstant, the 

6b introduced in Sec. 2.1 is the same type of param- 

eter as the 6a and 68 defined directly above, since it is 

likewise the change in the In of the length of a material 

displacement, 

Therefore, except for the fact that 6a and 68 are 

: : i  

, 
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mutually perpendicular, the parameters b a ,  68, and 6b are 

statistically identical. Hence = (16@12) = <(6b)2> 

= 8, 2 . A l s o ,  (6a)= (66)= (db) = 0, as in Sec. 2.1. 

We define the correlation P I  z ( 6 0 6 1 3 ) / 8 ~ ~ ,  where -1 p 1  < 3. 1. 
4 

Following the procedure in Sec. 2.1, we can now use a 
1 5  

two-dimensional form of the central limit theorem to obtain 

the joint probability density of the sum of N > >  1 two- 

dimensional variables ( A u , A B )  = ljZl N ( 6 j a , 6 j B ) .  Since the 

joint single-step density for ( 6 . ~ ~ 6  . 8 )  does not depend on 

previous values of these variables, the joint density for 

( A ~ , A B )  converges for large N to the bivariate normal density, 

which for this case simplifies to 

3 3  

16 

What is the sign of p l ?  Since the volume of the fluid 

element is approximately conserved, we expect 6 . a  and 6 - 8  to 

have different signs statistically, and hence p 1  is negative. 

If we assume that the correlation is caused only by 

3 3 

volume conservation, we can derive an exact value for pl. 

Let 69 be the third perpendicular logarithmic scale change. , 

Since pure shears do not change the volume of the fluid 

element, the joint probability density f ( A a , A B , A 5 ; N )  

contains a delta-function factor G ( A a + A B + A § ) ;  and since 

-11- 
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the arguments must appear symmetrically, we can write 

f ( A & , A 8 , 6 § ; N ) = C  exp ( - D [ ( A a I 2 + ( A B )  + ( A § ) 2  I/ ‘ & ( A a + A B + A § ) .  

We then integrate over A §  to get the marginal density 

i f ( A a , A B ; N )  = d A § f  ( A a , A B , A § ; N )  

Comparison with Eqn. ( 8 )  gives the result 

P 1  = 4 

At this point we can make contact with some of the 
1 0  

results of Parker , who a l so  derived the exponential 

increase of the magnetic field by considering the stretch- 

ing of material line elements. 

equation by supposing that the relative length change of 

a line element over a time step (large enough for the 

correlation with adjacent time steps to be small) was very 

small, but he recognized this assumption to be erroneous. 

Our use of the central limit theorem does not involve such 

an assumption, and also has  the advantage of treating the 

local perpendicular scale changes by means of a joint 

probability density, instead of having to discuss the ap- 

proximate evolution of a macroscopic flux rope. 

He set up a Fokker-Planck 

-12- 
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It is useful to derive an expression for the prob- 

ability density of Aa E Aa + AB. 
in the (Aa,AB) plane to Aa = Aa + A B ,  Aaf = Aa and then 

integrate over AaIt the Jacobian of the transformation 

being unity, to get 

One may change variables 

4 t  

! 

which is the normal density with variance 281 2 N(l+p1)=62 2 N. 

If Eqn. (9) holds, then 8 2  = 81. 

Since the magnitude A of the vector potential in a 

given fluid element is proportional to the area S of the 

perpendicular parallelogram, we have A/Ao = S/So,  and 

therefore, from Eq. (71,  AlnA = Aa + A B  = Aa. Hence 

< A )  = A~ (eAa> 1 Or 

(A) = Aoexp(+ep 2 N) , which is similar to 

Eqn. (5) for the field strength. 

We have used the same assumptions here as those 

employed in Sec. 2.1; namely, that both the dynamic re- ’ 

action of the field on the fluid and the ohmic dissipation 

may be neglected. 

3 .  THE JOINT DISTRIBUTION FOR A AND B, 

AND THE OHMIC DISSIPATION 

In this section we bring together the results of the 

previous section in order to gain information about the 



rate of ohmic dissipation of the field. 

sults depend on the assumption that the ohmic losses are 

negligible, but we will be able to extrapolate, with some 

reservations, to the regime where the ohmic losses are 

considerable. 

the boundary conditions force a permanent large-scale 

Fourier component of the field, the field must ultimately 

be destroyed. 

The previous re- 

The conclusion will be that, except when 

3.'1 The Local Scale and the Correlations 

Between 1nA and 1nB 

We begin by finding an expression fo r  the local 

scale R of the magnetic field. Dimensionally, the re- 

lation A 2 RB suggests itself. Now, this 9. is really 

the scale of A ,  but if Eipossesses no large-scale Fourier 

component, so that the polarity of 5 alternates randomly 
in space, then R z A/B is, on the average, the scale of 

B as well. Thus we may state that for each (r,t), there 

exists a point 5 + Ar (r',t) , such that 

M. 

c4 - 
nu 

where co is a constant geometric factor of order unity. 

It may happen that at a particular (s,t), the 

f i e l d  is flat, so that R + QD there. Then Ar will not .LL 
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exist, However, we interpret R as an average scale over a 

finite region, and since we are interested only in average 

quantities in what follows, our conclusions will still be 

valid. 

scale Fourier component, Eqn.(10) is not valid. In Sec. 3 . 3  

we present a counterexample to results derived from Eqn. (10) 

and show how other aspects of our reasoning may break down as well. 

It is important to emphasize that if B has a large- 
u 

Let us now discuss the correlation between A and B. Since 

A-R/pocpGx*Gy X 62, 

material volume element defined by the three infinitesimals, 

which is the total conserved mass in the 
e- - & m  a 

the quantity A * B  is time-independent except for fluctuations 

of the density, which as we have said we may ignore for sta- 
MYs 

tionary turbulence. Thus A'B = AB cosezconstant in a given 
L I -  

fluid element, wher'e 8 is the angle between A and B. There- 

fore, except for the anomalous case A - B  = 0, it follows from 
c. - 

rn& 

1nA 3. 1nB + In ]cost3 1 = ln 1 constant 1 that, for a given change 

of cos6, 1nA and 1nB will be negatively correlated, and we may 

use the generalized central limit theorem as in Sec, 2.2 to 

write the joint probability density, after N > >  1 time steps, 

of AlnA E Aa and AlnB E Ab as the bivariate normal density 

-15- 
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3.2 The Ohmic Dissipatian Rate 

Using the expression for 11 provided by Eqn. (lo), we 

now find the expectation value of the ohmic loss rate. At 

a point r the loss  of energy in erg/cm 3 sec is then 
cu 

Now in order to find the expectation value of this 

quanzity, we must weaken the correlation between Aa and Ab 

somewhat, since they are taken a distance Arcapart. 

in Eqn. (ll), we substitute p 2  -t p 3 ,  where p p  < p 3  < 0, 
and obtain, for a given fluid element, 

Thus 

- x 2 (,4Ab - 2Aa) 

But Eqn. (6) implies that the rate of energy density 

ir,crease from the random walk is, on the average, d <c)/dt 

= 2 c 0 1  2 (6t)-'exp(201 2 N). 
us that no matter how small Jo 2 is, the ohmic losses even- 

Since p 3  < 0, Eqn. (13) tells 
0 

tually become comparable to the random walk gain, and the 

field ceases to grow. In particular, if p 1  = -+ and 6 1  = 82 I 

much faster than exp (28 1 'N) . 
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May we now conclude from this that the field even- 

tually destroys i t s e l f ?  

densities derived for A and B depended on the assumption 

that tho ohmic losses were n e g l i g i b l e .  Indeed, one pos- 

sibility is that the ohmic dissipation can serve to in- 

creasa tho scala o f  the f i e l d ,  and thus  an equilibrium 

state might be possible. 

more thoroughly in the next subsection in connection with 

a counter-example, which a lso  entails the possibility that 

t he  reasoning leading to Eqn. (10) breaks down. 

Not yet, for the probability 

This possibility is discussed 

It is reasonable to conclude, however, that if the 

ohmic losses do not counter the tendency for the scale to 

decrease, and if Eqn. (10) holds, then the field must be 

destroyed. The probabilistic analysis given above casts 

considerable light on the action of the turbulent fluid 

motion on the field, and it is fair to say that the random 

walk process which tends to increase the field strength 

must at the same time inexorably be accompanied by a more 

drastic increase in dissipation: If (B 2 > increases, 
then d B  2 2  / A  > must increase even faster, since the dis- 
persion associated with the ,tm2 part of the probability 

density is increasing at the same time. 

-17- 
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3 . 3  A Counterexample 

We now discuss a special case, in which a large-scale 

Fourier component is forced upon the f i e l d  by boundary 

conditions, and we show how the preceding analysis breaks 

down. 

Consider the situation depicted in Fig. 2 ,  where the 

fluid is broken up into three regions: regions I and 111, 

whezc A = 0, u = 0, and region 11, where h > 0, u # 0. Let 

C be a part of the boundary surface between I and I1 such 

that the magnetic flux 0, = ii, B-dC > 0. 

IC. cc 

1 

1- * 
Then 9 ,  is constant in time, and the flux conserva- 

tion law ZeB = 0 implies that the flux 9, through the 

“cap” surface C 2  in region I1 is the same as 0,. 

no matter what the nature of the turbulence in region 11, 

and no matter how low the conductivity is there, the mag- 

netic field in region I1 must persist. 

state is possible. 

Therefore, 

Thus an equilibrium 
17 

Nachine integrations by Weiss 18 suggest that in such 

c system the magnetic field may be expelled out of the 

main body of the fluid into a boundary layer. 

Wciss dealt with time-dependent velocity fields, and one 

can imagine that in the random turbulent case the expulsion 

tcndency might be countered by turbulent transport of flux 

back out 02 the boundary layer into the main body of 

region 11. 

However, 

-18- 
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Where does the analysis in Sec. 3 . 2  break down in 

this case? As mentioned before, there is the possibility 

that the ohmic dissipation tends to keep the scale of the 

field from decreasing. This can be shown to be related to 

the fact that in this counterexample the field has a perma- 

nent large-scale component. 

Consider the very simple case of a diffusion equation 

aE/at = a 2 B/ax 2 . If the field is purely sinusoidal, then 

B = B e-Ktsin ( x 6 )  is a solution, and the scale of the 
1 

field 2, = B/(aB/ax) =  tan (x&) is time-independent. 

Now suppose the field has a large-scale constant Fourier 

component, so that B = B,+i3,e-Ktsin (x&) is a solution. 

Then the scale becomes R - - i(t)/'iBle- Ktcos (x&) 4 3  which 
Eiverges as t- . We see that, at least in this crude 

exmple, the diffusion term leads to an increase in scale 

if there is a large-scale component. 

There is also another possibility that we must reckon 

with, which may also operate to invalidate the conclusions 

of Sec. 3.2, and which deals with the assumption of Eqn. 

(10) and its application to the ohmic loss estimate. In 

writing Eqn. (lo), we assumed, in essence, that the field 
J 

has a random character such that the contribution to A 3 

corning from the field in distant volume elements was very 

snall. However, if B has a large-scale component super- 

irri2osed on a random, alternating-polarity component, then 
- 

t h ^ , e  analysis might break down because A~could conceivably 

inzroduce unexpected positive correlations between 1nA and InB. 

-19- 



It is not clear which of these two effects plays the 

greater role in the above counterexample. 

3.4 Extension to High Dissipation and Strong Fields 

Let us now go back to the situation in which there 

is no permanent large-scale Fourier component of the field, 

and for which the ohmic losses presuinably do not operate 

to increase the scale of the field. 

- 

As =he ohic losses grow, the field is no longer 

frozen in the fluid, and begins to "slip" relative to the 

fluid. 

botn beccme less efficient. 

abilistic analysis for the rsndom-walk transfer of energy 

fron the fluid to the field and for the ohmic dissipation 

should scill hold. 

nus-c be continually renormalized to larger values. 

each random-walk extraction of energy from the fluid, the 

scalc decreases. 

poizt, but in the absence of a large-scale Fourier compo- 

AISAE the scale of the field seems doomed to a continual 

decrease, until the field is extinguished. 

Thus the random-walk build-up and the scale decrease 

However, the general prob- 

Presumably 8 1  then decreases, and Jo 2 
But with 

Thus the energy is renewable up to a 

We may also try to extend the reasoning to the case 

where the field strength is high enough to control the 

rr,otion of the fluid. Where there is no large-scale compo- 

nent of the field, the same conclusion may result: It may 

-20- 



be impossible to put random-walk energy into the field with- 

out a continual decrease in scale. However, since the mag- 

netic force term in the fluid equations of motion is 

~ B ~ ( 4 n & ) ~ ' ,  the field is more amenable to distortion where 

k is large, and hence large fields and large scales may be- 

come positively correlated. 

tendency can counter the general reduction of scale implicit 

in the random-walk process. 

It is not evident that this 

4 .  A NECESSARY CONDITION FOR TURBULENT AMPLIFICATION, 

AND A POSSIBLE EXPERIMENT 

The conclusions of the preceding sections are, as we 

Therefore, it hzve said, by no means rigorously derived. 

would be very useful to devise an experiment to test 

whether or not they are valid. In order to do this, we 

first show a necessary condition, elucidated also by 

Syrovatski , for initial amplification of a magnetic field 
by turbulence. 

feasible experiment using liquid sodium as the conducting 

medium may be of considerable interest in testing our 

4 

It is then shown that a technologically 

results. 

Suppose that we are given a medium of conductivity u 

in which there exists turbulence of root-mean-square 

velocity u and characteristic scale Ilt, defined perhaps 
r" 00 

by the expression 1 9  a, E(k)dk/J E(k)kdk, where E&) 
. o  0 
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is the turbulent energy spectrum, and k is the wave number. 

At is thus the scale associated with the energy-bearin? part 

of the spectrum and i s  presumably the scale most significant 

in distorting the magnetic field. 

Now, any magnetic field carried with the fluid must, 

if it is to be amplified or maintained by the turbulence, 

have a scale which is less than or equal to the turbulent 

scale. Further, Eqn. (1) shows that for amplification we 

must have I ( g ~ ) ~ I > I ~ X ( A ~ ) ( g )  I , or in approximate form 

u/it'7 h / R  2 But since R 5 Rt, we must have u/Rt 7 A/At 2 , or 

4nauet7 1. 

2 
Batchelor used the analogy between vorticity and the 

magnetic field to derive a necessary and sufficient condi- 

tion for turbulent amplification and maintenance of the 

field. His condition is that the kinematic viscosity t, 

be greater than A ,  or 4nav7 1. The physical reasoning be- 

hind this inequality is as follows: The smaller is v ,  the 

smaller is the scale of the turbulence. The scale of the field 

is inherited from the scale of the turbulence, and thus if v is 

small enough the ohmic losses will overwhelm the growth rate. 

However, our analysis shows that if the field has no large- 

scale Fourier component, the scale of the field in any case 

becomes ultimately so small that the field is extinguished. 

Let us now see under what circumstances we may satisfy 

Eqn. (13), which is at least a necessary condition for turr 
. -- _ _  _ _  - -  - 

- -  . .  

-_ 
. -22- 
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bulent amplification. One of the most highly conducting 

fluids available in the laboratory is liquid sodium,.for 

which 

for which at = 1 cm, then Eqn. (13 )  will be satisfied 

for u 7 10 cm/sec. 

2 u 2 l o o 4  sec/cm 2 0  
"rf we can generate turbulence 

3 
i, 

Suppose that the liquid sodium be contained in a 

rotating cylindrical v e s s e l  of radius 16 cm and a counter- 

rotating set of paddles be situated inside to stir up the 

liquid. 

presumably inherited (but somewhat reduced) from the 

boundary scales. 

container and the paddles are counter-rotated each at a 

speed of 100 rev/sec, then the boundary speed of each i s  

The scale of the energy-containing eddies is 

Thus in this case 'Itz 1 cm. If the 

u ~ 1 0  4 cm/sec. This should insure the satisfaction of 

Eqn. (13), but higher speeds might of course be used. 

The magnetic amplification properties of the ar- 

rangement might be tested with various externally im- 

pressed magnetic fields, but it would be difficult to 

set up the situation described in the counterexample, where 

the external conductivity must be much higher than in the 

turbulent fluid. 

The viscous dissipation in the fluid would amount t o  . 
roughly vu 2 /kt2 erg/gm sec. For liquid sodium 21 , 

-2 2 
v 2 10 

the total viscous power is then l o 9  erg/sec = 100 watts. 

cm /sec, and if we assume l o 3  gm of7 material, 

The turbulent kinetic energy density 

kpu2 =: 5 )( 10 7 erg/cm 3 and if equipartion with the fluid 



* 

is ever reached, the field strength would amount to 

B Z 3 % LO 4 gauss, The associated ohmic dissipation is then 
AB 2 (4rr!Lt 2)-1 erg/cm 3 sec, and the total ohmic power for LO 3 3  cw 

is 1013 erg/sec - 10 6 watts. 

to reach this high power rate required for equipartion. 

Clearly, i t  would be impossible 

If, 
however, turbulent maintenance of the field is possible, con- 

trary to the results of this paper, then an average mechanical 

power input of 200 watts should maintain a field of 300 gauss. 

One might also test the possibility that a field which is 

initially strong enough to control the turbulence could be 

maintained. This possibility is discussed at the end of the 

previous section. Since large-scale fields of 3 X 10 4 gauss 

are not easy to produce in the laboratory, a more tractable 

combination of u and fit might be tried. 

A negative result for this series of experiments would 

substantiate the conclusions of this paper, but would not show 

that Batchelor's criterion is wrong, since 4 a a v  2 10 -5 . How- 

ever, a positive result would show that both Batchelor's cri- 

terion and our conclusions are incorrect, and that turbulent 

maintenance is possible. 
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